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Abstract

We consider a model of thin stationary viscous accretion disc around a
stellar mass compact object developed by Lyubarskij et al. [3]. The orbits of the
gaseous particles are ellipses which eccentricities may vary Jfrom inner to the cuter
parts of the disc and which apse lines ure in line with each other. The accepted
viscosity coefficient n obeys the relation y = f £ with X - surface density of the
aceretion disc, B and n - constants. Our considerations are dealing with the cases

when the exponent n takes integer values, namely n = -1, 0, 1, 2 and 3, which lie in
the physically suitable range. We derive in an explicit form the auxiliary functions
introduced by Lyubarskif et al. For two values of n = -1 and n =+ 2 we also write

the explicit form of the dynamical equation governing the radial structure of the
disc. For the other cases we limit us with graphical representations of the ratios of
the coefficients of this equation.

Keywords: accretion discs.

1. Introduction

There are both observational and theoretical grounds to believe that
the circular orbits of fluid particles in accretion discs are not the only possible
cascs which may be considered in treatment of accretion phenomena. The
most widespread applications of using eccentric orbits for description and
explanation of the observed astrophysical events are the superhumps in the
light-curves of dwarf-nova cataclysmic variables like SU UMa stars. This
type of binary stars consists of a white dwarf, with a gaseous accretion disc
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around it, and a main sequence star which supplies matter to the disc through
the inner Lagrangian point L;. The internal instability of the disc, caused by
viscosity siresses, as well as the tidal influence of the companion star, are the
reasons determining the elongated (elliptical) shape of the disc. Its
dimensions also vary during different stages of the outburst events depending
on the total accumulated mass and the thermal conditions. The mass transfer
stream from the companion star strikes the outer parts of the accretion disc at
the so-called “hot-spot” region. But nevertheless, it is not expected the
dynamics of the accretion disc to be significantly affected by that
perturbation. For example, time-resolved spectroscopy 1s applied to study the
nova-like variable UU Aqu. Using eclipse mapping techniques, spatially
resolved spectra of its accretion disc as a function of the distance from the
disc centre were obtained. Consideration of the data suggests that the
asymmetric structure in the outer disc {previously identified as a bright spot)
may be considered as a signature of an elliptical disc, similar 1o those in SU
UMa stars during superoutbursts [1]. However, it is worth noting that this
interpretation is not the only possible one. The non-axisymmetric features
observed in the discs of dwarfnovae during the outburst events are often
considered tc be spiral shocks, but this explanation strikes with some
problems: the natural site of the wave excitation lies outside the Roche lobe,
the accretion disc must be “hot”, the treatments of wave propagation docs not
take into account the vertical disc structure [2]. Consequently, the elliptical
shape of the discs in these cases remains a plausible explanation of the
observed features of dwarf-nova outbursts. '

During the recent years, increasing interest has been devoted to the
problem of formation of planetary systems around solar-like young stellar
systems. Here, the accretion discs, from which the planets generate, may
consist not only of gaseous component, but be predominantly composed of
solid dust particles and rocks, and have a complex radial structure. An
accreting protoplanet that is embedded into the disc may clear an annulus
about its orbital path. Numerous observational efforts have lead io the
discovery of many extrasolar planet systems {the number of planets
approaches one hundred at present time) and, in the majority of cases, the
eccentricities of the planet orbits were evaluated with sufficient accuracy.
These estimates definitely lead to the conclusion that, as a rule, the extrasolar
planets have orbits with cousiderable eccentricitics - evidence that the
progenitor accretion discs were also with clliptical shape.

The large variety of possibilities for the parameters of the systems
“accretion disc + binary star” suggests, in turn, a large number of theoretical
modcls for these astrophysical systems. It is not always possible to solve
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analytically problems arising in this way and numerical approaches are
needed to find the solutions of the equations describing the discs dynamics.
In this paper, we focus on a model of elliptical accretion disc developed by
Lyubarskij et al. [3]. Our aim is to obtain in explicit form the dynamical
equation describing the propertics of the accretion disc around a stellar mass
compact object for some particular values of the viscosity law parameters. An
important specific feature of this model is that the apsc lines of all particle
otbits are in line with each other. This condition, imposed “by hand”, may be
removed, as it has been done in more recent studies of fluid dynamics of
eccentric discs by Ogilvie, by using complex values of disc eccentricity [4].
But this complication makes it much more difficult to find an analytical
solution to the dynamical equation of the disc. Our main purpose is to use an
analytical approach te the considered problem. We restrict ourselves to the
more simple task based on the model of Lyubarskij et al. [3], although the
accuracy of this description (in opposite to the model of Ogilvie [4]) is not
enough suitable to make precise tests of the theory by observations.
Nevertheless, we hope that the fully analytical treatment of the accretion
flows in such simplified cases may be useful in the attempts to solve
analytically {or to determine the limits of the analytical approach) the morc
complicated and realistic models of aceretion discs, which are appropriate for
evaluating the model parameters from direct comparison with observations.

2. Accretion Disc Model

In what follows, we shall use the notations and approach according to
the paper of Lyubarskij et al. [3]. The eccentric disc model, considered in this
paper, includes also the non-stationary regime, but we shall limit curselves
only to the stationary picture. The theory represents, to some extent, a
generalization of the standard thin a-disc theory to the case of elliptical
streamlines of gaseous particles. The accepted viscosity law describes a
proportionality between the viscosity coefficient # and the #n-th power of disc
surface density 2@ y = 2", where f§ and # are constants. Qur intention is to
write explicitly and to investigate the possibility for exact analytical solution
of the dynamical equation, governing the radial structure of the accretion
disc, for integer values of the power n, namely for n = -1, 0, 1, 2, and 3.
These selections are of astrophysical interest and the implications for non-
integer values of n may possibly be oblained through an interpolation
between the data for these integer numbers. In the considered model, the
eccentricity ¢ of the particle orbits may vary under the transition from the
mner to the outer parts of the disc. For every elliptical orbit, the dependence
of its eccentricity e on the focal parameter p (p = b*/a; a and b are the major
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and the minor semiaxes), giving the “size” of the ¢llipse, 1s determined by the
following dynamical equation [3]:

(1) [ Y(3Z/6¢)-Z(8Y/0¢)] & + [ Y (BZ/0e) - Z(3Y/de) - Yie]eé +
Y[R/ DW-Z -(1/2X1-eYY]= 0.

This is a sccond order ordinary differential equation, where the dot )
denotes differentiation with respect to the variable 1 = /n p and it is taken into
account that e = e (p, #n). The analytical expressions for auxiliary functions Y,
Z and W (averaged over the azimuthal angle ¢) and the integrals Ig—, I and
i (k =0, 1,...,4) are given in a previous paper [5], devoted to the
investigation of equation (1). All these quantities are functions of e, &= deldu
and n. In the present study, we have computed in explicit form the integrals
Iy, lpsand I, (k= 0, 1,...,4), and correspondingly Y, 7 and W for the above
mentioned integer values of the exponent n. This is done by the use of some
alrcady tabulated integrals ([6], formulae 858.525 and 858.535) and
consequential application of the derived results for the next steps of the
evaluations. We remind here that, according to Lyubarskij et al. [3], the
negative values of the eccentricity ¢ simply imply that the pcriastron of the
ellipse lics on the negative part of the abscissa axis as opposite to the case of
positive valucs of e, when its abscissa is positive. We stress again that the
considered model of particle orbits includes only apse lines in line with each
other, i.e., all ordinatcs of the periastron points are equal to zero. We obtain
the following results:

Casc n=-1

(22) To(e,e,n=-D=n(1-&) 2 +é),

(2b) Iie,é,n=-1)=-3ge(l-e) %2,

(2¢) Lie,é,n=-D=r(l-&)* (142,

Qd) Lle,én=-1)=n{1-&) " [2+5-66* +2(1 - )1,

(2e) lile,e,n=-1)=3a(1-&) e "[2-5+4e*-2(1- )],

Q) e,en=-1)=n(1-&)"[1-(e-0)"] e {-2e(1- ") é (e- &)
?[1-(f—é)E]m;}zle(l-ez}z(qe-mé)z[1~(e-é)2]”“-2(_] - e?) "
(¢-8)" teQ+e)é'[1-(e-6)"]1""},

(2h)  Ip-(e,é,n=-1)= m(l-e) 7?2 +3.
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(3a)
(3b)
(3¢)

(3d)

(3¢)

(3g)

(3h)

(4a)
(4b)
(4¢)

(4d)

(4¢)

(4g)

(4h)
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Case n=1{

lo(e,é,n=0)=2n (1 -€*)>?[1-(e-¢) ]“2- {ee[l-(e—e’)z]
Poe(e-e) 2(1-)[1-(e-¢)°1" + U )”L
Li(e,é,n=0)=2n(l-¢&)¥[1-(e-é)> ] S {(e-é-€)[l-(e
)1”-weu1efﬂ
lg(een—(}) 2m (1 - e) ”{1-(6» &)1 e 2 i1+t +eo)
2[1-(e-¢)*]* +(1 - Wﬂ
Ls (e, ¢,n.=0) =2m (I - “[I(ee)]‘”' Pe-e)7 " {-
(1- e)m+[e g e ez+2ee+ez(1 e) ]
[1-(e=&)*] 2},
L;(een—(}) 2n(1—e) m[l-(e e) | 2 "“"(e e) 2
{e(l .«3)2 +e+e é+3eé- See-Ze-l—'See)[l-(e
B g R 3€e +2e )7(1 - e)m[l- - &) ]”}
Im(een—(}) Zn(l-e) ”2[] (e-é) ]w_. {(23 -2 -3e?
¢+ 8e'é- 120 & +e +8¢% ¢’ -2e ") (1-€H)¥? + (-2 +2&° + 3¢
é-2¢ é)?[1-(e- e) ]3”2
I—(e,é,n=0)=m(l-é%) w[l~(e-e‘) I e3¢ (26 -4 +2¢ -
6e* é + 10e* é - 4¢° ¢ + 6e & - 5¢° & + 2e & )[1-(e &1 - 2(e-
é)3(1~e2)5’f2}.

Case n=+1]

To(e,é,n=+1)=2n(e-¢&) "I (e~ ¥ 1 e {4 -3Sle
+&8 43828 ~ed)(1-)"7 + [l -(e-¢) /]3’2},
Lige,n=+1D)=2n(1-&""[1-(e-&) "¢’ {[e-(e-6)°]
(1-e)"-ell-(e-0)"1"}
Iz(e,é,n=+l)=2n(1-ez)'”zgl-( &1 Me -1+ -3ee
+2é2)?(1-ez)”2+[1—(e—é) 1%y,

Ii(e,é,n=+1)=2m (1. &y ”2[1- (e-6)21e e (e-6)?
2{-(e-&)°[1-(e- e2]m+[ 2.t -2eé+5 -7 +3eé

+é' [1-(e-&)* 1101 - ﬁ%

3

Lie,é,n=+1)= 213(1 )" ”2[1 Vi< e) 1732 ¢ 2520 8)3 § e
_3)3 71 -{e-é) ]3”2 (e3+e + 3¢ ¢ - 66 e+9r3?'é2-4ezé3)
(1 ”2 +( 383 +€ )(I 6)14’2[1 e-)Z].“‘."'?.}j

Imwen—ﬂ)nu-2>“n- &1 6 (20 vt

2e¢" - 10e* ¢ +10&% ¢ + 5¢° & 20-‘.’5£2+2€1+5€2€1+20€4€1-5684

108+ e +2620 ) 2(1 - )”2+2 [1-(e- 3)2]5’2}
lo(e,e,n=+1)=2n(1-)"""[1-(e-6)?1 e 3 {(2-2 -
3¢ é+8et ¢



1288 ¢+ &+ 876 206 ) (1-62 )2 +(- 288+ 20 + 367 6 - 26 &)
7[1-(e-6)%]*}.

(5a)
(5b)
(3¢)
(5d)
(5¢)

(5g)
(Sh)

(6a)
(6b)
{6c)

(6d)

{6¢)

(6g)

(6h)

Case n=+2

lo(e,é,n=+2)=n[l-(e-&)* ] [2+(e-¢)],
Lie,é,n=+2)=-3n(e-&)[1-(e-¢)]",
Lie,ée,n=+2y=n[l+2e-¢)"][1-(e-¢)*] 2,
Lie,é,n=+2)=xn 1-(e-é)z]'m(_e-é)"?'{-2+5€2-6e4-lOeé
+24¢% ¢ + 567 - 3667 ¥ +24e 6’ - 661+ 2[1 - (e-6)2 172,
Is(e,é,n=+2)=n[l-(e-&)° ] (e-8)*{6-15¢*+ 12" + 30e &
- 486> ¢

-1se2+72e2e2-48ee3+12é‘*-6[1-(e-é)zlm},
Ipe(e,é,n=+2y=n[243-&)2][1-(e-8)217"7,
Io(e,é,n=+2)=Iy{e,6,n=+1), (seeformula(4g)).

Case n=+3

TIo(e,e,n=+3)=n[l-(e-&) ] (2--¢"-2ec+3e¢

+3e* .37 " tee’),
Life,é,n=+3)=n[l-(e-6)>] ™ (e-&)' (-3* +3&* + Te & -8
é-46 +626% -6y,
Lie,é,n=+3)=n[l-(e-8)2] " (1+&°-2¢"-5ee+6e° ¢
+46° - 6% ¥+ 2e 8,
Le,g,n=+3y=a[l-(e-6)>] " (e-6) " {-2e+7 - 11" + 6
1467 ¢ +47¢% 6 <34 ¢+ Te &8 186° & + 785 & + 6267 & - 90" &
-23eé* +50° ¢ 438 -6 -6+ 267 12e[1-(e-)2 177},
Lie,e,n=+3)=n[l-(e-6)21 " (e-6y°16e-21e+27&" - 12¢
+26 +358 - 100" 6+ 64¢° ¢ - Te & + 1303 & - 1326° &% - 76° -
60e® &* + 120" &* - Se &' - 206% ¢ + 84° - 4867 &° + 36e &0 - 887 + (-
6e-28)[1-(e-6)*17"},

e, é,n=+N=@d)[1-(e-6)21 " (e-6)" (8e+ 4’ - 12° -
8¢-32¢" ¢ + 456" ¢+ 52¢ 6 - 608° 6 - 248 + 307 8 -3 &),
lo(e,6,n=+3)=n[2+3-&) ][I -(e-&)21"7.

The above formulae must be considered under the restrictions || < I,

|| < 1 and e - ¢] < 1, which from a physical point of view guarantee that the
trajectories of the gas particles are bounded (i.e., are ellipses) and do not
mtersect with each other. From a mathematical point of view these conditions
also mean that the singularities in the cxpressions for metric, radius vector,
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Keplerian vclocity and shear tensor (sec [3], Appendix A), as well as in the
integrals In—, To, (k= 0, [, ... , 4) arc avoided. It should be pointed cut that
in some cases values e = 0, & = 0 or (e - ¢) = 0 may occur in the denominators
of the expressions (2) - (6). Neverthcless, the integrals can also be
analytically computed (cven more easily ! ) by direct substitution of the so
mentioned zero values into the original definitions of the integrals. These
results may be compared with the limits derived from relations (2) - (6) when
e, ¢ or (e - &) approach zero. The later calculations are based on the
application of the L’Hospital’s rule for solving of uncertainties of the type
0/0. In the both cases the final results are the same and consequently, we do
not necd to trouble about the nullification of the denominators - the
transitions of the expressions (2) - (6) to the singular values of their
arguments are continuous.

3. Auxiliary Functions and Dynamical Equation

According to paper [5], wherce the expressions for Y{e, ¢, n), Z{e, ¢, n)
and W(e, é, n) arc given in explicit form as linear combinations of the
integrals I (e, ¢, n), (k =10, 1, ..., 4) (sec formulae (2) - (4) from [5] ).
Having alrcady the results (2) - (6) for integer », we are in a position to
compute Y{e, ¢, n), Z(e, ¢, n) and W(e, &, n) in a straightforward manner.
There is not indispensable need to use the available linear relations between
integrals To—, Ios and I, (k = 0, 1, ..., 4), in order to reduce the complexity of
the initial formulae and, correspondingly, the intermediate calculations. Such
simplifications are very desirable when the more general considerations of
non-integer n are examined, when manifest evaluations of Ty
(k=0,1, ..., 4) like (2) - (6) are not available. We shall dircctly write here
the analytical form of the auxiliary functions Y(e, ¢, n), Z(e, ¢, ny and W(e, ¢,
myforn=-1,0,...,3.

Case n=-1
(7Ta) 3Y(e,é,n=-1)=(p/GM) "> (1-) ¥ (3-3 +4eé),
(7b)  3Z(e, é,n=-1)=(p/GM) ”2(1 22 -1+ & -2ee+4(1-€)”‘]
(7e)  OW(e, é,n=-1)=(p/GM)" e"’)'“ e l[ef-2"+ef+4ee-
4¢° ¢+ 246" - 248 &+ 4e° ¢ +(8e:'2-24é (=D .

Case # —0

(82) 3Y(e,¢,n=0)=(1- e " - (e- 2] e N { (- 3(3+3e é-5¢
e+2e)2(] -+ (3e-3& 1 464 2 e)[l-(e é) ]”2},
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(8b)

(8c)

(9a)

(9)

(9¢)

(10a)

{10b)

(10c)

(11a)

3Z(e, é,n=0)=[1-(e-6)>] e ' {-e+2e-&"-6-2e"¢+3e" ¢
-2eé” 280+ (e-+286)(1-)"[1-(e-8)2]"* +4e]1 -
(e_é)z]uz},

OW(e,e,n=0)=(1-¢)""*[1-(e-&)*]1 e e (e-&)" {(-'+
2¢° - +27 -8 6+ 6e° e+ Ted + 28 - 13" &8+ 1267 & +
12¢' ¢’ -8e é*-4e* ') 2(1 - + (87 ¢-8eé -84 ) (1-¢€°)"
[1-(e-&)%1" +(e -2 +¢e -e*é+6e" é-5e°¢-8eé +4e’é*+
8’ ¢’ +86°-8e & -4 )1 -(e-¢)1 1"}

Cagse n=+1

3Y(e,é,n=+1)=(IGM)'"? (1 - &) " [1 -(e- &)1 * & { (4e-
8+ 4’ +36+98¢- 126" e+ 2ed® + 126 6% - 46° - 4 &) (1 - &
b det 840 -8l e+ 8 et de 4P ) [1-(e-6)7 ]
32(e,é,n=+1)=g;;c;m“2[1 (-1 e-8) -+ 2 - €0
+2e¢-8" 6+ 6e 6+38%+60° 6% - 13" &+ de o’ + 1267 & - 46" -
468 &'+ (4e® - 4e" -8e o+ 1662 ¢-2067 @ +8e &) [1-(e-€)2 1"}
OWle, e, n=+1)=(pIGM)"* [1-(¢-&)2 1 {1-28"+ e +4eé-
42 6+ 42 +(8-82+ 16e6-86" Y[l -(e-6)2]" ).

Case n=+2

3Y{(e,é,n==+2)=(p2GM) [l -(e-&}* 1" (6- 12" + 6&* + 23e ¢
-23¢’ ¢ -96" + 316 60 - 14e &),
3Ze, e, n=+2)=(PRGM [l -(e-&)*1 P (e-¢)" {- 2"+ 6" -
6e' +2¢° + 66" ¢-29" e+ 40e° ¢ - 178 e+ 18e &’ + 26" & - T8e° &°
+58¢” &% - 66 + 68¢% & +28e" ¢° - 1026° & - 56¢ &% + 74’ & + 9861
é42+9sgj-84ezé5-49e4e‘5+26eé6+1093é6+(863-24ezé)[1-(e-
a 1"},
SW(e, &,n=2)=pRGM}[] -(e-&)* ] (e-&) > { 2’ - 6° + 6’
227 -6 ¢ +27¢ ¢ - 366 é + 156% & + 6e &6° - 44’ & + 82 & -
44¢” & - 188 + 706 & - 110" & + 626° &* - 86e & +132¢° &* - 38¢°
& +396°- 142626 - & & +92e ¥+ 126 6% - 2467 - 467 & +( 16¢” -
326° + 162 - 4867 &+ 160¢* & - 1126° ¢ + 48¢ &° - 320e” &° + 336e° &2
+%8§262 & - 544¢° & - 96e &' + 496¢° &* - 240" &° + 48e ) [1 - (e -
&)1 -

Case n=+43
3V(e, é,n=+3)=(1/2) (P/IGM) " [1 -{e-&)"] " (6- 182 + 18¢*
-6e°+30e & - 60&° 6+ 30° 8 - T6* + 656 & - 58" & - 20e & 4 50¢°
& - 46" - 1662 &),
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(116)  3Z(e, é,n=+3)=(1/2) (p/GM) > [1-Ce- é&)? 1 e-e)t{-2e"+
8e® - 125 + 8e'0 - 2e12+8e é - 463 é+90e é- 742 e+ 22¢') ¢ +
36’ &% - 4364 87 - 1248 ¢ +233e - 102" ¢* - 24e &* + 248¢" & -
206e° & - 280e” & + 262¢° ¢* + 6¢° - 230.«3‘2 &+ 6805‘ & - 666 & -
410e8e + ?Gee - 658¢° e + 546¢° &° +402e & - 7e6 + 260e2 ét -
60?e“ J2408 8 26T+ 296678 + 825 -46° - 56e - 123
& +(Se - 24¢° +24e -86'0-32e e+144e é —I92e é + 80 ¢
216" &7 i 5288 e - 312e &+ 96e° & - 67285 & + 640e" &
1 408e” ¢* - 760e° 6% - 966 &° + 528¢° & - 200’ ¢° + 327 &)
[1-(e -&)1"},

(11c)  9W(e, &, n =+ 3) = (1/2) (/GM)** [1 -(«.»-(»:)2]"’”’2 (e-é)"‘ {26 -
8e® 4 12e% -8 + 202 - 82’ 6 +42e° 6-T8e" 61 62”6 - 18" & +
2867 &% - 133 &7 4+ 248¢° & - 209¢° &% + 66" & - T2¢ & + 3846 &
-662e° & + 47267 & - 12267 &* + 188" - 54267 &' + 1340¢” &° - 914¢°
& 10268 & + 302¢ & - 1642% & + 1474e° & + 187 & - 45¢° +
1038.92 & - 1681e" &% - 122¢° 6° - 338¢ &7 + 12006° &' + 114e” & +
3268 -47632 38-488 S +80eé” +86% ¢ + (166" - 64¢’ ¢4 807 &)

(1-(e-&)*1"}.

Let us remind some of the notations used above: p is the focal
parameter of the ellipse (for circular orbits p is simply the radius of the
particle trajectory at the considered moment), u = In p, é = 9e/0u, G is the
Newton’s gravitational constant and M is the mass of the compact object
around which the accretion disc rotates. The knowledge of the factor (p/GM)
"2 (for all astrophysically significant values of the exponent ) is not needed,
because after the substitution of the auxiliary functions Y, Z and W into the
dynamical equation (1), this factor cancels out. The partial derivatives of
these auxiliary functions with respect to e and ¢ are computable without any
technical problems and we shall not give here their analytical evaluations.
We shall note again that the singularity problem which may arise in relation
to null values of e, ¢ and (e - ¢) in the denominators can be overcome by
means of the L’Hospital’s theorem (indeterminations of the 0/0 type). The
same observation will hold later for the coefficients of dynamical equation
(1). Here, another property of the free term of this equation should be
mentioned. Upon computing in ¢xplicit form the expression (3Y) [ 9W -
2(37) + (&° - 1) (3Y) ], substituting it into equation (1), and reducing it to a
common denominator with the second term on the left-hand side of (1), it
turns out that the result factorizes with respect to é. The free term is absorbed
into the term containing the first derivatives of e and the dynamical equation

24



(1) becomes a second order homogeneous differential equation. [t may be
shown that this featurc is inherent to (1) not only for the considered intcger
valuesof n=-1,0, ... ,+ 3, but also for an arbitrary physically acceptable ».
In view of this, we rewrite equation (1) in the following form:

(12) Ale,é,n)é + Ble,é,n)e = 0.
We can write the solution of the above equation as
(13) e, n) =] exp {- [ [ Ble, ¢, n)/Ae, é,m) du} + ey ,

where, according to the general theory of second order ordinary differential
cquations, the solution (for a given value of the cxponent #) depends on two
integration constants ey = e(uy , n) and é, = iy , n) ; ug = In pp 1is a fixed
initial value. For example, p; may be the focal parameter of the
innermost/outermost ellipse bounding the disc.

The above formally written solution is not usefu] because Ale, é, n)
and Bfe, ¢, n) are known in an cxplicit form as functions on e, ¢ and #, but
not as functions on u (so far e = e(u, n) is not solved vet 1). A method for
solving the equation (11} by means of expanding the cceentricity e by powers
in # will be considered in a forthcoming paper. Now wc shall restrict
ourselves only to give the explicit form of dynamical equation (11} for two
values of n, namely # = - | and n = + 2. For the other considered integer
values of n (n = 0, + | and + 3), the analytical expressions are too long to be
given. For this rcason, we depict graphically the dependencics of the ratios of
the coefficients of equation (11) A and B on ¢ and é for fixed 2.

Dynamical equation : Case n=- 1

(4 22 (1-H[8+(1-APé + [-36884 6¢°- 3¢ - 368 + 74 6 -
46e" ¢ +8e" ¢ - 48e &* +486° &% - 8¢° & + (126° - 126° 1 366 - 56¢°
+ 68’ e +d8e e’ - 4867 Py (1-6 e = 0.

Dynamical equation : Case n =+ 2

(15} { - 10" + 40¢° - 60e® + 40" - 102" + 144e ¢ - 560¢° 6 + 71246 6 -
252¢" ¢ - 148e” & + 92¢'' ¢ + 1104¢” & - 3165¢" &% 4 265465 & - 2294°
& - 364" & - 504e &+ 4628% &1 - T208¢° & + 227267 & + 8126 &
+ 186" - 284267 ¢ + 9366¢° ¢ - 555465 67 - 112068 &' + 696e ¢ -
6404e’ & + 70166° & + 9807 & - 816° + 22582 &° - 5021 & -
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532¢° é6—4086 & +1940¢° ¢’ + 164¢° é7+54é3-31632 &.206 8+
{ 28¢° —84e +84¢% - 28¢™ - 144ee+416e é- 228e é

-2]6e é+ 172e é- 35232 &+ 1572e & -300e 420e8 é2+3603
e - 2328¢° & + 1644’ & + 500e” & + 11766 2124 4 - 2606°
e - 108¢ & +934 & es- 12¢° e5+3fse2 e6+68e & - IOSee 20e°
¢ )I1-(e-0) 21" 3 & + { 6" - 24" + 36¢° - 24e‘°+6e12-72ee'+
272e é- 323e é+57e e+ 1276 é - 61e“e 726 23682 é2+982e“
& - 683¢° ¢ —27638 &+ 28591" 52 360ee 234e 3 + 889¢° ¢
524¢7 & - 819¢° & + 270¢" - 1528e &+ 1255¢6% ' - 1538¢° &* +
1617 ¢* + 1493ee -41416° & + 3717° &° - 2289 & - 366¢° +
4043¢° e6 5488¢* &% +2331e°¢° - 1717e &' + 4870€° ¢

- 1665¢° & +261&° -2550e2 e3+?89e“ S+ T0ed -22282 8 - 84e‘0
+286 !0+ [ - 24e +72¢° - 726 +24e”’+72ee I64e é- 726 ¢

+ 348 ¢ - 184¢° ¢ + 728 +923 &+ 126* e - 828¢% & + 65268 &% +
396e & - 756¢° &° + 1632¢° & - 1416¢’ e - 2526 + 1?8832 & -
2868¢% &* + 2060e° &* 133zee +3492¢° &° - 2024e & +288¢° -
2460?; ¢® +1284¢" ¢° + 864e & - 472¢° ¢ - 1086° + 7662 ¢* 1 [1 - (e -
&?1"%ye=0.

4. Conclusions

The complexity of the accretion flows phenomena requires using both
analytical and numerical approaches for their description. The analytical
methods are preferable because of the compact representation of the results,
suitable for their interpretations and further applications. They also allow to
control more clearly the process of derivation of the solutions and the
influence of the accepted approximations on the output data. It often happens
that the analytical treatment of the considered problem is not possible to be
performed up to the final stage of the computational process and further use
of numerical methods is needed. Nevertheless, even this partial application of
the analytical description reveals which of the approximations are more
important and suggests more effectively how to overcome them and how to
improve the model without complicating it too much. Of course, the
comparisons with astronomical observations, in our case, observational data
of close binary systems containing accretion discs, serve as a test for the
task’s successful solution. As mentioned above, already existing theoretical
models of eccentric discs around the compact stars in binaries explain
successfully many of the observed properties of these astronomical objects.
For example, Murray [7] has compared the theoretical predictions for the
precession rates of eccentric discs with the observed superhump periods, It
was found that the inclusion of a retrograde pressure contribution improves
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the fit to the data and the consistency with the suggestion that the eccentricity
is generated at the 3:1 Lindblad resonance.

It may be supposed that the detailed analytical treatment of the more
simple model developed by Lyubarskij et al. [3] would be suggestive for
finding analytical solutions to more complicated models like that worked out
by Ogilvie [4]. The difficulties and limitations inherent to attempts to resolve
the more simplified (and probably easier to solve!) problem would also be
indicators of how perspective are the efforts to attain analogous progress in
the investigation of the complicated situation, The true answer of this puzzle
is expected to be achieved through a series of improved step-by-step
analytical and numerical evaluations of the particular accretion disc models,
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THhHKU BUCKO3HU EJJUNITUYHH
AKPEIIUOHHMN JTUCKOBE C
OPBUTHU UMAILU OBIIIA
NBJIXKHUHA HA IEPUACTPOHA.
JUIHAMHWYHO YPABHEHME 3A IIEJJOYUCJIEHA
CTOMHOCTH HA CTEIIEHUTE B 3AKOHA 3A
BUCKO3HUTETA

Humumop Jumumpos
Pczionme

Hue pasrnexpgame Mozen Ha THHBK CTAUMOHAPEH RUCKO3EH
aKPCLMOHEH JINCK OKOJIO KOMITAaKTER OBEKT ChC 3BE3LHA Maca, paspaorten ot
Jltobapexu u ap. [3]. OpbuTuTe Ha Ta30BUTE YACTHIA Ca CIUICH YHHTO
CKCHEHTPHIHUTETH MOTaT fa BaApKpaT OT BRTPEIIHAT KbM BBHIIHATA YalT Ha
AnMCKa M YUUTO aNCHAHYA JIHHWW JIEXAT BBPXY enHa npapa., llpuerusT
KOShUIMCHT 34 BUCKO3HUTET2 ¥ YIOBNETBOPSABa 3aBUCHMOCTTa # = S X7, cbe X
- MOBBPXHOCTHATA NNBTHOCT Ha AKPELMOHHUS TUCK, f W n - KOHCTAHTH.
Haiuute pasriexanus TpeTUPaT cliyMauTe KOTATO eKCIOHEHTATa 7 IpHeMa
HeNIOYUCTICHH CTOMHOCTH, a uMeHHo # = - 1, 0, 1, 2 u 3, KOUTO JleXaT BBB
Gusnueckn  ofocHoeana ofnact. Hue TogydaBame B SBEH  BHI
crioMaraTeNiHuTe QyHKIHM BbBeaeru oT Jlrobapeku v p. 3a aBe CTORHOCTH
Ha n =~ 1w n =+ 2 HHE CHINO CME HAMKCANM B ABCH BHJ, JUHAMHIHOTO
YpaBHCHHE OOYCNIaBAINO palMalNHATa CTPYKTYpa Ha JHCKA. 3a JPyTHTe
CNy4ad HUE CC OTPaHWYaBaMC ¢ TPaQWHHH IPEACTARIHUS Ha OTHOLIEHUATA
Ha KOSQULMEHTHTE Ha TORA YPABHEHNE.
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