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Abstract
We consider a model of thin stationary viscous accretion disc around a

stellar mass compact object developed by L)tubarskij et al' [3J' The orbits o'f the

gaseous particles are ellipses which eccentricities may vary from inner to the outer

parts of the disc and which ap,se lines are in line with each other. The accepted
-viscosity 

coefficient 4 obeys the relation q : P E' with E - surface density of the

accretion disc, B and n - constants. Our considerations are dealing with the cases

when the exponent n takes integervalues, nantellt n: - 1,0, 1, 2 and 3, which lie in

the physically suitable rqnge. We derive in an explicit form the auxiliary functions
introduced b, Lyubarskij et al. For two value,s of n : - I and n : + 2 we also write

the explicit form of the dynamical equation governing the radial structure of the

disc. For the other cases we limit trs with graphical representations of the ratios of
the cofficients of thi,g equation.

Keywords z accretion discs.

L. Introduction
There are both observational and theoretical grounds to believe that

the circular orbits of fluid particles in accretion discs are not the only possible

cases which may be considered in treatment of accretion phenomena. The

most widespread applications of using eccentric orbits for description and

explanation of the observed astrophysical events are the superhumps in the

light-curves of dwarf-nova cataclysmic variables like SU UMa stars. This

type of binary stars consists of a white dwarf, with a gaseous accretion disc
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around it, and a main sequence star which supplies matter to the disc through
the inner Lagtangianpoint L1. The internal instability of the disc, caused 6y
viscosity stresses, as well as the tidal influence of the companion star, are the
reasons determining the elongated (elliptical) shape of the disc. Its
dimensions also vary during different stages of the outburst events depending
on the total accumulated mass and the thermal conditions. The mass transfei
stream from the companion star strikes the outer parts of the accretion disc at
the so-called "hot-spot" region. But nevertheless, it is not expected the
dynamics of the accretion disc to be significantly affected by that
perturbation. For example, time-resolved spectroscopy is applied to study the
nova-like variable uu Aqu. Using eclipse mupping techniques, ,puiiully
resolved spectra of its accretion disc as a function of the distance from the
disc centre were obtained. consideration of the data suggests that the
asymmetric structure in the outer disc (previously identified is a bright spot)
may be considered as a signature of an elliptical disc, similar to those in SU
uMa stars during superoutbursts [1]. However, it is worth noting that this
interpretation is not the only possible one. The non-axisymmetric features
observed in the discs of dwarf-novae during the outburst events are often
considered to be spiral shocks, but this explanation strikes with some
problems: the natural site of the wave excitation lies outside the Roche lobe,
the accretion disc must be "hot", the treatments of wave propagation does not
take into account the vertical disc structure [2]. Consequently, the elliptical
shape of the discs in these cases remains a plausible expianation or tn"
observed features of dwarf-nova outbursts.

During the recent years, increasing interest has been devoted to the
problem of formation of planetary systems around solar-like young stellar
systems. Here, the accretion discs, from which the planets generate, may
consist not only of gaseous component, but be predominantly composeo or
solid dust particles and rocks, and have a complex radial structure. An
accreting protoplanet that is embedded into the disc may clear an annulus
about its orbital path. Numerous observational efforts have lead to the
discovery of many extrasolar planet systems (the number of planets
approaches one hundred at present time) and, in the majority of cases, the
eccentricities of the planet orbits were evaluated with sufficient accuracy.
These estimates definitely lead to the conclusion that, as a rule, the extrasolar
planets have orbits with considerable eccentricities - evidence that the
progenitor accretion discs were also with elliptical shape.

The large variety of possibilities for the parimeters of the systems
"accretion disc f binary star" suggests, in turn, a large number of theoretical
models for these astrophysical systems. It is not aiways possible to solve
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analytically problems arising in this way and numerical approaches are
needed to find the solutions of the equations describing the discs dynamics.
In this paper, we focus on a model of elliptical accretion disc developed by
Lyubarskij et al. [3]. Our aim is to obtain in explicit form the dynamical
equation describing the properties of the accretion disc around a stellar mass
compact object for some particular values of the viscosity law parameters. An
important specific feature of this model is that the apse lines of all particle
orbits are in line with each other. This condition, imposed "by hand", may be
removed, as it has been done in more recent studies of fluid dynamics of
eccentric discs by ogilvie, by using complex values of disc eccentricity [4].
But this complication makes it much more difficult to find an analT|.;ical
solution to the dynamical equation of the disc. our main purpose is to use an
analytical approach to the considered problem. We restrict ourselves to the
more simple task based on the model of Lyubarskij et al. [3], although the
accuracy of this description (in opposite to the model of Ogilvie [4]) is not
enough suitable to make precise tests of the theory by observations.
Nevertheless, we hope that the fully analyticaT treatment of the accretion
flows in such simplified cases may be useful in the attempts to solve
analytically (or to determine the limits of the analytical approach) the more
complicated and realistic models of accretion discs, which are appropriate for
evaluating the model parameters from direct comparison with observations.

2. Accretion Disc Model
In what follows, we shal1 use the notations and approach according to

the paper of Lyubarskij et al. [3]. The eccentric disc model, considered in this
paper, includes also the non-stationary regime, but we shall limit ourselves
only to the stationary picture. The theory represents, to some extent, a
generalization of the standard thin o-disc theory to the case of elliptical
streamlines of gaseous particles. The accepted viscosity law describes a
proportionality between the viscosity coefficient r7 and the n -th power of disc
surface density Z: ry: pE",where p andn are constants. Our intention is to
write explicitly and to investigate the possibility for exact analytical solution
of the dynamical equation, governing the radial structure of the accretion
disc, for integer values of the power n, namely fot n: -1, 0, 1,2, and3.
These selections are of astrophysical interest and the implications for non-
integer values of n may possibly be obtained through an interpolation
between the data for these integer numbers. In the considered model, the
eccentricity e of the particle orbits may vary under the transition from the
inner to the outer parts of the disc. For every elliptical orbit, the dependence
of its eccentricity e on the focal parameter p (p : b'/a; a and b are the major
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and the minor semiaxes), giving the "sjze" of the ellipse, is determined by the
following dynamical equation [3]:

(1) lY@Zta\-Z@Y/a\le +^ly(OZ/ae - z(OytOe) - y, ele +
Y [ (3/2)W- Z - (U 2)(r -"r; Y1 = 6 .

This is a second order ordinary differential equation, where the dot (.)
denotes differentiation with respect to the variable u = ln p and it is taken into
account that e: e (p,n). The analytical expressions for auxiliary functions y,
z and w (averaged over the azimuthal angle q) andthe integrils 16-, Io* and
11 (k: 0, I,...,4) are given in a previous paper [5], devoted to the
investigation of equation (1). All these quantities are functi,ons of e, e= 6elOu
and n.In the present study, we have computed in explicit form the integrals
Io-, Io* and Ip (k: 0, I,...,4), and cor:respondingly y,Z and,W for the above
mentioned integer values of the exponent n. This is done by the use of some
arready tabulated integrals ([6], formulae g5g.525 and g5g.535) and
consequential application of the derived results for the next steps of the
evaluations. we remind here that, according to Lyubarskij et al. ;3], the
negative values of the eccentricity e simply imply that the periastron of the
ellipse lies on the negative part of the abscissa axis as opposite to the case of
positive values of e, when its abscissa is positive. We stress again that the
considered model of particle orbits includes only apse lines in line with each
other, i.e., all ordinates of the periastron points are equal to zero. We obtain
the following results:

Case n: - I

(2a) I6(e, d, n: - l) : n (1 - e2)- s/2 (2 + e2) ,(2b) 11(e, e, n: - I) : - 3n e 7I - e2;'s/2 ,(2c) I2(e, e, n: -l): rT.(I - e2)-s/2 (L + 2e2) ,(2d) It (e, ,2, n : -l) : n (l - e21- 
srz 

"(2e) I4(e, e, n : -l): 3n (1 - e2)' s/2

(2g) Io, (e, i, n - -1) : n (1- e2)-srz ll
? [t - (: - 4' f''' ^* 2e e -L2
(e-e)3 +e72+e2)e2U-@-

(2h) Io-(e, d, h: -1) : n (I - 
"')-7/2 12 + 3e21 .
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Case n:0

(3a)

(3b)

(3c)

(3d)

(3e)

(3e)

(3h)

Case n: I I

(4a) I6(e^,e,n-! I):?n("- ") ''' lI -("- ")'l-r/2 e't {(- "'+ "o 
-3e3 e

+ e2 +3e2 e2 - e e3 ) 0 - 4t/2 + e2 7r - (e-- 4rft,, ),(4b) \(e,g,./!^:+ 1) :2n(t - ?2)-t/2 I - @ - q2l'3t2 e-' {1"- (" - 
")t )

(l - "')t'' - "lI - (" - e)' l''' \,(4c) I2(e,^e, n : + t):,?" (t - 
"')- 

trz lt _,!, - ")2 f-3/2 e-' { (- I * e2 - 3e d
+ 2e2) ? (l - "')t', *lr - (e - qt lt,, \,

(4d) I3(e,e,n:! l):2n(l - e2)-1/211- @- q2)-3t2 e'' "'' ("- q-'
? {.- (" - q' U 

^- e^- 4' lt': Il'r' - 
"o 

- i" i * 5"t 
" 

- 7"i 
"2 

+ 3e dj
+ e' lI - (" - e)" l''" I (I - e'1"' t, 

,
(4e) Ia(e, d, n: * I):2n (I - 

"')-- qt 
^? I! - @ - q'^l''' 

^* (-(l-"')t/2 +(3ee2+e3)0
(49 lo*(e, d, k: +1) : n (1 - e2)-

2e7 - loe4 e * loe6 e 4- 5e3 e2

- 10e3 eo+et+ze2 es ) ?(1 -"')t'' +2e3 1l -("-e),1t,,\,
(4h) Io-(",8,n.:+ l):2n(I-e2)-r/2U -k-4tl-3t2 e-, {(z"t -2es -

3e2 e+8ea e
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- r2e3 e2 +e3 +ge2 e3 -2eea)(r - u,)3/2 +G2"t +2es +3e2 e-2ea e1
? [l - (e - e)'lt'' ] .

Case n: * 2

(5a) ls(e,e,n:+ 2):7r [1 - (e - e)
(5b) l7 (e, d, n: * 2): - 3n (" - 

") |(5c) l2(e, e, n: 1- 2) : n fl + 2(e -
(5d) h(e,e^,n=+?):n[l - (e - e

+ 24ej e + se2 - 36er e2 + 24e
(5e) Iq(e, ?, n:-t 2): 7r [1 - (" - e)

- 48e' e
- l5e2 + 72e2 e2 - 4ge ei + 12 

"a 
_ 6 yr _ (e _ e), lt,, \,(5e) Ion(e, d, k: + 2): nl2 + 3@ - e'llt - (" - 

")2l-7t2 ,(5h) Io-(e, d, fl: + 2):Io*(e, d, h: + 1) , ( see formuh (ag) ) .

Case n: * 3

(6a) l6(e,^,!,"=13):T [l -@- 42]-712 (2- 
", 

- 
"o 

-2"e+3e3 d
+3e2-3e2e2+ee3l,

(6b) 11 (e, d, n: r 3)^: n^ll - (e - e)2 f-7/2 @ - ")-t 
(- 3", + 3ea + 7e e - ge3

e-4e2 46e2e2-eo),
(6c) l2(e,^e,n=\3):7r.[l -(e- e)2f-7/2 (l+ e2 -2ea - 5ee+ 6e3 e

+4e2-6e2e2+2ee1),
(6d) It(e,g,n:-t3):nfl -(e- e)2f7/2 @-e)-o { -2"+7e3 -lIes +6e7

- l4e2 e + 47ea e -34e6 e*7e e2 -7ge3 e, +Zges e2 + 62e2 e3 -90e4 e3

-23eea +50e3 e4 +3es -6e2 es -6gdu+2e7 +2ell -(e-e)rfr,r\,
(6e) la(e, e, n : t^3) : zu 11 - (e - e)' l-tlz (e- d)-t { Oi - Zi"3 +'2ies -'12e7

+2e 1-35e2 e- 100e4 e-r 64e6 i-7e e2 + 130e3 e2 _ l32es e2 _7e3 _

60e2 e3 +l2oea 
"3 

-see4 -20e3 e4 +ges -4ge2 es +36ee6 -ge7 +(-
6e - 2) II - (" - e)']''' \ ,

(6g) ro*(e,d,^k: + 3)- (n.?)lt _ (e- e)21-et2 @- e)-t( 8r-t 4ej - r2es -
8e-32e2 e -r45ea e+ 52e e2 -60e3 e2--24e3 +30e2 e3 -3 es\.

(6h) W(e,d,k: + 3): n12+3(e- e)'I [t - ("- ")2f'7/2
The above formulae must be considered under the restrictions lel < r,

ldl < 1 and le - el < r, which from a physical point of view guarantee that the
trajectories of the gas particles are bounded (i.e., are ellipses) and do not
intersect with each other. From a mathematical point of view these conditions
also mean that the singularities in the expressions for metric, radius vector,
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Keplerian velocity and shear tensor (see [3], Appendix A), as well as in the

integrals Ie , Io, , Ir (k : 0, 1, ... , 4) are avoided. It should be pointed out that

in some cases values e : 0, d:0 or (" - e): 0 may occur in the denominators

of the expressions (2) - (6) Neverlheless, the integrals can also be

analytically computed (even more easily ! ) by direct substitution of the so

mentioned zero values into the original definitions of the integrals. These

results may be compared with the limits derived from relations (2) - (6) when

e, d or (" - ") approach zero. The later calculations are based on the

application of the L'Hospital's rule for solving of uncertainties of the type

0/0. In the both cases the final results are the same and consequently, we do

not need to trouble about the nullification of the denominators - the

transitions of the expressions (2) - (6) to the singular values of their
arguments are continuous.

3. Auxiliary Functions and Dynamical Equation
According to paper [5], where the expressions for Y(e, d, n), Z(e, e, n)

and w(e, e, n) are given in explicit form as linear combinations of the

integrals Ip(e, e, n), (k:0, 1, ... ,4) (see formulae (2) - (a) from [5] ).
Having already the results (2) - (6) for integer n, we are in a position to
compute Y(e,,!, n), Z(e, e, n) andW(e, e, n) in a straightforward manner.

There is not indispensable need to use the available linear relations between

integrals Io-, Io,, and Ir, (k: 0, 1, . ..,4), in order to reduce the complexity of
the initial formulae and, correspondingly, the intermediate calculations. Such

simplifications are very desirable when the more general considerations of
non-integer n are examined, when manifest evaluations of Ir.

(k:0, l, ... ,4) like (2) - (6) are not available. We shall directly write here

the analytical form of the auxiliary functions Y(e, d, n),2(e, e, n) andW(e, 
'e,

n) for fl: - 1,0, ... , 3 .

Case n: - I

Case n: 0

(sa) 3Y(e,d,n:0):(1 -?)-t''17 -@-42lt/2^e t {(-3er3e3 -€-5e2
et2e e2)? ('1 -)zrtrz +(3;-3e3 +4ei2e2 e)l -@- e)'l''' \ ,
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(8b)

(8c)

Case n: * |
(9a) 3y(e,d,h: + t): (plGM''' (I - e2)-r/2 I - @- e)'l-3t2 e-t {(a"-

8e3 + 4es + 3e + 9e2 e - l2ea e + 2e,!2 + I2e3 e2 - 4e3 - 4ez e3 ) e - "')t'' *(-4e-r8e3 -4es -8e2 e1-8ea e+4ee2 -4e3 e2 ) [1 - (" -q'lt'' ]
(9b) 3Z(e,e,n:+I):(p/GM'''ll -(e- e)2)-3/2 @- ")-z 1- e2 +2ea - e6

-r 2e e - 8ej e i 6es e + 3e2 + 6e2 e2 - l3ea 
"' 

+ 4" e3 + l2e3 e3 - 4e4 -
4e2 ea +(4e2 -4ea -8ee*r6e3 e-20e2 e2 +8ee3)J -@- e)211/2)

(9c) 9W(e,i,h:+ l): (plGM'2lI -(e- 
")2f-3/2 {I -2e2+ ea +4ee-

4e3 e + 4e2 e2+ ( 8 - 8e2 + l6e e - 8e2) [1 - (" - e)' l''' ] .

Case n: * 2
(10a) 3Y(e, d,h:+2): (pl2GMll - (e - 42l-stz (6 - l2e2 + 6ea +23e e

- 23e3 e - ge2 + 3le2 e2 - r4e et 1,
(10b) 3Z(e, e, n: + 2): @l2GMU - (e - q2 l-stz (e - 4-t {- 2"' + 6es -

6e7 +2ee -16e2 e-29ea e-r40e6 e-r7e8 e-tr\ee2 +2e3 e2 -7\es e2

+58e7 e2 -6e3 +68e2 e3+28e4 e3 -102e6 e3 -56eea+74e3 
"o+98"t

eo + ges - 84e2 es - 49e4 es + 26e e6 + l0e3 eu + (8e3 - 24e2 e) lr - (e -
e)'lt'' \ ,

(10c) 9W(e, d, h: 2) : (pl2GM lI - (e - e)t l-st2 (e - 4't {2"t - 6es + 6ej
-2ee -6e2 e +27ea e-36e6 e-rl5eg e-t6ee2 -44e3 e2 +82es e2 -
44e1 e2 - 18d3 +70e2 et -rr\ea e3+62e6 e3 -86eea+732e3 e4 -38es
e4 +3ges -I42e2 es -ea es +g2ee6+12e3 e6 -24ei -4e2 ei +(16e3 -
32es + r6e7 -48e2 e+r60ea d -rl2e6 e-r48ee2 -320e3 e2 +336es e2

+ 288e2 e3 - 544e4 e3 - g6e ea + 496e3 e4 - 240e2 es + 48e e6 ; yt - 1" -

4'l''' \ .

e

+
+
/2

.T

Case n: r 3

(lla) 3Y(e,d,k:+3): (ll2)(p/GMt''11 -("-")217t2 (6 - 18e2+18e4
-6e6+30ee -60e3 e+30es e-le2 +65e2 e2 -58e4 e2 -20ee3 +50e3
e3-4e4-l6e2ea1,
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(1 lb) 3z(e, e, n:-t 3): (ll2) (plc@stz ll - @ - 42 )-7/2 @ e)-o { - 2"0 +
ge6 - lze\ + 8el0 - 2er2 + 8e3 e - 46e5 e + g0e7 e - 74ee e * 22e11 e *
36e2 e2 - 43ea e2 - 124e6 e2 + 233es e2 - 102e10 e2 - 24e e3 + 248e1 e3 -
206es e3 - 2g0e7 ej + 262ee e3 + 6e4 - 230e2 ea + 680ea e4 - 66e6 e4 -

4l0es ea + 70" es - 658e3 es + 546et et + 402e7 e5 -'7e6 + 260e2 e6 -

607ea e6 -242e6 e6 -26ee7 +2g6e1 e7 +82es e7 -4eB -56e2 e8 -12e4
e8 +(8e4 -24e6+24e8 - 8e'0 -32e3 e+l44es a -792e7 e-t80ee e-
2l6ea e2 + 528e6 e2 - 3l2eB e2 + 96e3 e] - 6'72es et + 640e' e'
+40gea e4 -760e6 e4 -96e3 es + 528"t es -200e4 e6 +32et e',)
l1 -(e -e)'l''' 1,

(llc) 9W(e, d, ft :+ 3) : (ll2) (plcQtrz lI - (e - e)2 f-7/2 @ - e)-o { 2"0 -
8e6 + 72e8 - 8e10 + 2e12 - 8e3 e +42e5 e - 78e7 e j' 62ee e - 78e1t e +
28e2 e2 - l33ea e2 + 248e6 e' - 20ges e2 + 66e10 e2 - 72e e3 + 394e3 el
- 662es e3 + 472e7 e3 - l22ee et + l8e4 - 542e2 a4 + l340ea eo --914"u

ea + 102"8 ea + 302e es - r642"t et + l474es es + l8e7 e5 - 45e6 +
1088e2 e6 - l68leo eu - 122"u eu - 338" e7 + 1200e3 e' + 714es e7 +
32e8 -476e2 e8 -48"a e8+80"ee +8e3 ee +(l6ea -64e3 e+80e2 e2)

u-@-e)'l''' j.
Let us remind some of the notations used above: p is the focal

parameter of the ellipse (for circular orbits p is simply the radius of the
particle trajectory at the considered moment), u = In p, e = 0e/0u, G is the
Newton's gravitational constant and M is the mass of the compact object
around which the accretion disc rotates. The knowledge of the factor (plGM
nt2 

lfor all astrophysically significant values of the exponent n) is not needed,
because after the substitution of the auxiliary functions Y,Z and W into the
dynamical equation (1), this factor cancels out. The partiaT derivatives of
these auxiliary functions with respect to e and ri are computable without any
technical problems and we shall not give here their analytical evaluations.
We shall note again that the singularity problem which may arise in relation
to null values of e, d and (e - e) in the denominators can be overcome by
means of the L'Hospital's theorem (indeterminations of the 0/0 type). The

same observation will hold later for the coefficients of dynamical equation
(1). Here, another property of the free term of this equation should be

mentioned. Upon computing in explicit form the expression (3Y) l. 9W -
2(32)-t (e' - 1) (3Y) l, substituting it into equation (1), and reducing it to a
common denominator with the second term on the left-hand side of (1), it
turns out that the result factorizes with respectto e. The free term is absorbed
into the term containing the first derivatives of d and the dynamical equation
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(l) becomes a second order homogeneous differential equation. It may be
shown that this feature is inherent to (1) not only for the considered inieger
values of n : - 1, 0, . . ., + 3, but also for an arbitrary physically acceptablJ n.
In view of this, we rewrite equation (1) in the following form:

(12) A(e, e, n) d + B(e, e, n) e : 0 .

We can write the solution of the above equation as

( 13) e(u, n) : esl exp {- J I g(r, e, n)l A@, e, n) I du} * e6 ,

where, according to the general theory of second order ordinary differential
equations, the solution (for a given value of the exponent rz) depends on two
integration constants e6 = e(u6 , n) and, es = e(ut) ,-n) ; uo = ln po is a fixed
initial value. For example, po may be the focal parameter of the
innermo s t/outermo st ellip s e bounding the di s c.

The above formally written solution is not useful because A(e, e, n)
and B(e, e, n) are known in an explicit form as functions on e, e and n, but
not as functions on z (so fat e : e(u, n) is not solved yet l). A method for
solving the equation (11) by means of expanding the eccentricity e by powers
in z will be considered in a forthcoming paper. Now we shall restrict
ourselves only to give the explicit form of dynamical equation (11) for two
values of z, namely, : - I and n : * 2. For the othei considered integer
values of n (n: 0, f 1 and + 3), the analytical expressions are too long tole
given. For this reason, we depict graphically the dependencies of the ratios of
the coefficients of equation (11) A and B on e and. i for fixed n.

2er7r-e2)3/2 [g+(l -e2)rt2le + l-3er+6es -3e7 -36e+74e2 e_tz-4' - 6 I,^' .') .',^ 1- .'t
(r4) 2e- lI-e')'', Ig +(l e')""1e + f _3"'t6e'_3e,_36e*74e2 e_

46e" e +8eo d-4ge e2 +49e3 e2 -ges e, +(12e3 _l2es +36e_56e2 e
+ 6gea e -r 4ge a2 - 4ge3 e2 ) 0 - e2)t/2] e : 0 .

(15) 2 + l44e e-560e3 e-t724es e-
252e7 e-l48ee er92e1t e+Il04e2 e2 -3l65ea 

"'+265i"u ef-iZg"r
e2 -364e10 e2 -504ee3+4628e3 at -7208"t d +22iJ tisti"; nt+ rge4 - 2g42e2 e4 + g366eo eo - 5554e6 e4 - rr20e8 eo * egZ"- et- -
6404e3 es + 70l6et et + 9g0e7 es - g1d6 + 225ge2 nc; _ torr-"+ ne _
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532e6 e6 - 40Be e7 + lg40e3 e' + 164e5 ej + 54e8 - 316e2 e8 - 2ze4 e8 +
( 28ea - 84e6 + 84e8 - 28e10 - l44e e-r 416e3 e - 228es e

-216e7 d+l72ee e-852A I +l57zea e2 -300e6 I -420"8 e2 +360e
e3 - 232get et + l644es e3 + 500e1 e3 + ln6/ e4 - 2124e4 ea - 260e6
eo -l08ees +984"3 et -l2es es +363 e6+6gea e6 -l\gee7 -20e3
e')ll -(e- e)211t2 \ e + {6e4-24e6 +36e8 -24e10 +6etz -72ee*
272er i-323es e*57ej e+ l27ee e-6let'e-72e2 -2i6e2 e2+gg2ea
e2 - 693e6 I - 276"8 e2 + 295e10 I - geo" e3 - 234e3 d + ggges e3 +
524e7 e3 - Slgee e3 + 270e4 - l52ge2 ea + l2ssea ea - l53geu eo +
l6l7es ea + l4g3e es - 4l4let et + 37l7es es - 22gge7 e5 - 366e6 +
4043e2 e6 - 54ggea e6 +2331e6 e6 - l7l7e e7 + 4970e3 e7

- r665es e7 + z6le8 - 2550e2 e8 + 7g9ea e8 + 722e ee - 222e3 ee - g4er0

+28e2 dto+ [ -24ea +72e6 -72e8 +24er0 +72ee-164e3 e-72es e
+ 348e7 i - l84ee e + 7ze2 + 92e2 e2 + rzea I - gzge6 e2 + 652e8 e2 +
396e e3 - 756ej e3 + l632et e3 - l4l6e1 et - 252ea + lZgge2 i4 -
2868e4 ea + 2060eu eo - 1332e es + 3492e3 es - 2024et et + 2ggeu -
2460e2 e6 +r284ea e6 + 864e e7 - 472e3 e7 - l0ge8 + 76e2 et 171, - 1e -
e)'ft't]1":0.

4. Conclusions
The complexity of the accretion flows phenomena requires using both

analytical and numerical approaches for their description. The analytical
methods are preferable because of the compact representation of the results,
suitable for their interpretations and further applications. They also allow to
control more clearly the process of derivation of the solutions and the
influence of the accepted approximations on the output data.It often happens
that the analytical treatment of the considered problem is not possible to be
performed up to the final stage of the computational process and further use
of numerical methods is needed. Nevertheless, even this partial application of
the analytical description reveals which of the approximations are more
important and suggests more effectively how to overcome them and how to
improve the model without complicating it too much. Of course, the
comparisons with astronomical observations, in our case, observational data
of close binary systems containing accretion discs, serve as a test for the
task's successful solution. As mentioned above, already existing theoretical
models of eccentric discs around the compact stars in binaries explain
successfully many of the observed properties of these astronomical objects.
For example, Murray [7] has compared the theoretical predictions for the
precession rates of eccentric discs with the observed superhump periods. It
was found that the inclusion of a retrograde pressure contribution improves
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the fit to the data and the consistency with the suggestion that the eccentricity
is generated at the 3:1 Lindblad resonance.

It may be supposed that the detailed anal5rtical treatment of the more
simple model developed by Lyubarskij et al. [3] would be suggestive for
finding analytical solutions to more complicated models like that worked out
by Ogilvie [4]. The difficulties and limitations inherent to attempts to resolve
the more simplified (and probably easier to solve!) problem would also be
indicators of how perspective are the efforts to attain analogous progress in
the investigation of the complicated situation. The true arrr*i, of this puzzle
is expected to be achieved through a series of improved step-by-step
analytical and numerical evaluations of the particular accietion disc moiels. 

^

References
1. B a b t i s t a, R., c. s i I v e i r a, J.E. S t e i n e r, K. H o rn e. spatially resolved

spectra of the accretion disc of the nova-like variable UU Aquarii. -
Monthly Not. Royal Astron. Soc., 314, 2000, Nl 4,p.713.

2.O g i I v i e, G. I' Tidally distorted accretion discs in binary stars, - Monthly Not. Royal
Astron. Soc., 330, 2002, Ne 4, p.937.

3. L y u b a r s k i j, Yu, E., K. A. P o s t n o v, M. E. p r o k h o r o v. Eccentric accretion
discs. - Monthly Not. Royal Astron. Soc., 266, 1994, Ilb 2 ,p. 5g3.

4. o g i I v i e, G. I. Non-linear dynamics of eccentric discs. - Montrriy Not. noyal
Astron. Soc., 325, 2001, Ilb I, p. 231.

5'Dimitrov,D.V'pnepossiblesimplificationofthedynamicalequationgoverning
the evolution of elliptical accretion discs. - Aerospace Research in
Bulgaria, 17, 200I, p. 17.

6' D w i g h t, G. B. Tables of Integrals and Other Mathematical Data. New york Mc Millan
Company, 1961.

7. M u t r a y, J' R' The precession of eccentric discs in close binaries. - Monthlv Not.
Royal Astron. Soc., 314, 2000, Ne l, Ll.

27



T bHKI4 BI{ CKO3HI4 E JItrITITI4TIHLI
AKPEIII4OHHII AI,ICKOBE C

oPBr4Trr r4MArUVt OBrUA
AbJrlnuHA HA ITEPI4ACTPOHA.

AI4HAMI4qHO yPABHEHIIE 3A IIEIOTIUCIEHI,I
CTOI;IHOCTI4 HA CTETIEHI4TE B 3AKOHA 3A

BrICKO3I4TETA

luuumup fiuuumpon

PesmNre

Hze pa3rnexAaMe Mo.{en Ha rbH6K craurzoHapeH Br,rcKo3eH
aKpequroHeH AI,TCK OKOJTO KOMTTaKTeH o6err cbc 3Be3AHaMACa, paspa6oren or
Jlro6apcru u Ap. [3]. op6rarr,rre Ha ra3oBr,{re qacrr,rqu ca ervrrrcvr qrrrzro
eKclleHTpr,rqr,rrerr,r Morar Aa BapHpar or BsTpeuHara KBM BbHrrrHara qacr Ha
AvcKa r,r rrr4r,rro atTcvI.HLr rrvlJ^vrv Jrexar BBpxy eAHa npaBa. flpuerzxr
roe$zqzenr 3a Br,rcKo3r4Tera ry y,4oBnerBoprBa 3aBrlcr,rMocrra ry 

: B 2", crc Z
- iloBbpxHocrHara rrJr6THocr Ha aKperluoHHr,rr Ar4cK, f u n - KoHcraHTr,r.
Haurure pa3rnexAaHvIq rperprpar clrwaure Koraro eKcrroHeHTara n rrpueMa
qenoqr4crenra crofinocrvr, a r,rMeHHo fl: - 1,0, 1,2 u 3, Kouro Jrexar 868
Susuuecr<z o6ocHosaHa o6lacr. Hue lonyqaBaMe B qBeH BaA
crroMafareJrHr,{Te $ynrquu BBBeAeHr4 Or Jko6apcKt4 pr Ap. 3a Aee crofiHocru
Ha n : - 7 u n : I 2 :Hue cbilIo cMe Hanr4calvr B rBeH Br.rA ArzHaMr4qHoro
ypaBHeHr,re o6yclaerqo paApraJrHara crpyKrypa Ha ,qvcKa. 3a 4pyrrare
cny.{av Hr,re ce ofpaHr,rqaBaMe c rpa$uunu [peAcraBrHDfl HA OTHO[reHr4qra
Ha rcoe$uqlleHTr,rre Ha roBa ypaBHeHlre.
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